An evolutionary recursive algorithm in selecting statistical subset neural network/VDL filtering
نویسندگان
چکیده
We propose an evolutionary recursive algorithm, for the exact windowed case, to estimate subset vector discrete lag (SVDL) filters with a forgetting factor and an intercept variable. SVDL filtering is demonstrated as a basis for constructing a multi-layered polynomial neural network by Penm et al. (2000) The new proposed time update recursions allow users to update SVDL filters at consecutive time instants, and can show evolutionary changes detected in filter structures. With this new approach we are able to more effectively analyse complex relationships where the relevant financial time series have been generated from structures subject to evolutionary changes in their environment. An illustration of these procedures is presented to examine the integration between the Australian and the Japanese bond markets, and the USA and the UK bond markets, changed over the period. The proposed algorithms are also applicable to full-order vector discrete lag (VDL) filtering with a forgetting factor and an intercept.
منابع مشابه
Novel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection
In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...
متن کاملVerification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation
Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However, the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definiti...
متن کاملPrediction of Surface Roughness by Hybrid Artificial Neural Network and Evolutionary Algorithms in End Milling
Machining processes such as end milling are the main steps of production which have major effect on the quality and cost of products. Surface roughness is one of the considerable factors that production managers tend to implement in their decisions. In this study, an artificial neural network is proposed to minimize the surface roughness by tuning the conditions of machining process such as cut...
متن کاملAppraisal of the evolutionary-based methodologies in generation of artificial earthquake time histories
Through the last three decades different seismological and engineering approaches for the generation of artificial earthquakes have been proposed. Selection of an appropriate method for the generation of applicable artificial earthquake accelerograms (AEAs) has been a challenging subject in the time history analysis of the structures in the case of the absence of sufficient recorded accelerogra...
متن کاملDesign of an Intelligent Controller for Station Keeping, Attitude Control, and Path Tracking of a Quadrotor Using Recursive Neural Networks
During recent years there has been growing interest in unmanned aerial vehicles (UAVs). Moreover, the necessity to control and navigate these vehicles has attracted much attention from researchers in this field. This is mostly due to the fact that the interactions between turbulent airflows apply complex aerodynamic forces to the system. Since the dynamics of a quadrotor are non-linear and the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- JAMDS
دوره 2006 شماره
صفحات -
تاریخ انتشار 2006